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Abstract. A coarse-grained off-lattice bead-spring model is used to reveal the complex dynamics of a
polymer chain in a quenched porous medium in the presence of an external field B. The behavior of the
mean square displacement (MSD) of the center chain bead and that of the center of mass of the chain as a
function of time is studied at different values of the barrier concentration C, the field strength B and the
chain length N . In a field, important information on the way in which chains move between obstacles and
overcome them is gained from the MSD vs. time analysis in the directions parallel and perpendicular to
the flow. Instead of a steady approach to uniform drift-like motion at low C, for sufficiently strong field B
we observe logarithmic oscillations in the effective exponents describing the time dependence of the MSD
along and perpendicular to field. A common nature of this phenomenon with oscillatory behavior, observed
earlier for biased diffusion of tracers on random lattices, is suggested.

PACS. 36.20.-r Macromolecules and polymer molecules – 82.45.+z Electrochemistry and electrophoresis
– 87.15.-v Biomolecules: structure and physical properties

1 Introduction

The transport behavior of a polymer chain is generally
studied by analyzing the time dependence of the mean
square displacement (MSD) of a monomer of a chain (g1)
and that of the center of mass of the chain molecule (g3)
which are defined by

g1(t) = 〈[rN/2(t)− rN/2(0)]2〉

g3(t) = 〈[rCM (t)− rCM (0)]2〉, (1)

where rN/2(t) (rCM (t)) is the position of the center node
(center of mass of the chain) at time t. A common prac-
tice in such analysis is to look for the leading power-law
dependence of these mean square displacements described
by the exponents ν1 and ν3,

g1(t) ∼ tν1

g3(t) ∼ tν3 . (2)

For Fickian diffusion, the value of the power-law expo-
nent is 1. The dynamics of polymer chains has been ex-
tensively studied in melts where the motion of each chain
is hindered by the presence of surrounding chains caus-
ing “entanglements”. In an ideal chain model of a melt,
the mean square displacements exhibit various power laws
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in different time regimes [1–3]. The magnitude of these
power-law exponents is well known from the short to the
long time regimes, i.e., for a monomer (bead/node) mo-
tion, ν1 = 1 (diffusion), 1/2 (Rouse), 1/4 (constrained
Rouse), 1/2 (reptation), and 1 (diffusion) finally in the
asymptotic limit while the corresponding exponents for
the center of mass, ν3 = 1, 1/2, and 1 spanning over the
whole time regime. For single molecules instead of chains,
diffusion in a fixed bias was discussed since many years
[4–8].

We have recently studied the dynamics of a poly-
mer chain in a quenched random medium using a Monte
Carlo simulation [9,10]. We used an off-lattice bead-spring
model of a polymer chain in three dimensions with a ran-
dom distribution of quenched obstacles. We found that the
power-law dependence of the mean square displacements
in the short time regime is modified from that of an ideal
melt mentioned above: the MSD exponents ν1 and ν3 de-
pend on the obstacles/barriers concentration [9].

We would like to extend this study to the motion of a
polymer chain in a quenched porous medium in the pres-
ence of a constant field. In absence of quenched barriers
(porosity 1), the field drives the chain to drift and one
would expect a crossover from a diffusive behavior at short
time scales to a drift-like motion in the long time regime.
The problem becomes more complex due to the presence
of quenched barriers as one begins to increase the barrier
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concentration (i.e. reduce the porosity). One may expect
not only the crossover behavior to change but the expo-
nents for the power-law dependence may be altered as the
field begins to compete with the barriers.

Earlier [11] we have carried out an off-lattice computer
simulation study of the motion of a bead-spring chain
for different chain lengths (i.e. number of beads) N in a
porous matrix with random distribution of quenched bar-
riers, investigating the impact of bias and obstacle concen-
tration on drift velocity and the conformational properties
of the polymer chains. Related work on the motion of par-
ticles by ac forces in periodic structures [12], electrophore-
sis of polyelectrolytes [13,14] and gel electrophoresis for
polymers with impurities [15] has provided valuable the-
oretical insight into this field although computer experi-
ments could shed more light into intricate details of the
problem. Effects of bias, barrier concentration (porosity),
polymer concentration, and temperature on the confor-
mational and transport properties of chains have been ex-
tensively studied using discrete lattice models in recent
years [16–19].

In the present work we focus on the behavior of the
effective exponents for a wide range of B and C values,
where B denotes the external field and C is the barrier
concentration, using an off-lattice model with a bead-
spring chain. While we recover the standard dynamics
of the chain for extreme values of the parameters, i.e.,
B → 0, C → 0, we observe unusual transport behav-
ior in certain concentration regimes (C ∼ 0.75) in rela-
tively high field. For example, the power-law behavior of
the MSD exhibits logarithmic oscillations in ν1 and ν3. In
this respect a rather complex system, such as a polymer
chain driven through a random medium, reveals close re-
semblance to the oscillatory behavior of MSD exponents,
found for tracer atoms in biased diffusion on percolative
lattices, predicted theoretically [4], and observed in sim-
ulations [6,7]. On a lattice with strong bias, walkers are
trapped for a time growing exponentially with the length
of the trap in bias direction; since they need one, two,
three . . . backward steps to escape, the logarithm of the
trapping times increases by constant intervals, leading to
the log-periodic oscillation. In our off-lattice model, the
discrete structure is less pronounced, leading to weaker
oscillations in agreement with our observations. As in the
case of random walkers on a simple cubic lattice in the
presence of an electric field [6], also for chains we find
that the period of such logarithmic oscillations, λ, grows
with increasing average distance between obstacles. Our
findings are also consistent with the simulational results of
Stauffer and Sornette [7], who observe an increase of λ as
the field strength B is increased. The model is described
in the next section, followed by results and discussion with
a summary at the end.

2 The model

We use an off-lattice bead-spring model [20] for the
polymer chain in a three-dimensional porous medium

generated by a random distribution of quenched obsta-
cles/barriers. Since details of the model have been given
before [20], in the following we only recall the potentials
involved in the chain model, define the porous medium,
and the physical quantities measured.

2.1 The coarse-grained polymer chain

The bead-spring model has been used extensively in the
past [10,21–26]. A coarse-grained polymer chain of length
N consists of N beads/monomers which are successively
connected by spring bonds using a finitely extensible non-
linear elastic (FENE) potential,

UFENE = −
K

2
R2 ln[1− (

l − l0
R

)2] (3)

where l is the bond length, R = lmax − l0, while l0, lmax,
and lmin are the equilibrium value of the effective bond
length, and its maximum and minimum values, respec-
tively, such that lmin < l < lmax and lmin = 2l0 − lmax.
As in most studies using this model, we set lmax = 1,
lmin = 0.4, l0 = 0.7. The associated spring constant K is
fixed at K = 40, where the energy units are defined by
setting the parameter ε (see below) to unity.

The non-bonded interactions among the beads are de-
scribed by the Morse potential,

UM(r) = ε[exp(−2α(r − rmin))− 2 exp(−α(r − rmin))]
(4)

where r is the distance between the centers of the beads
and at rmin = 0.8 the potential (4) has its minimum: ε = 1.
The parameter α = 24 is chosen here such that the inter-
action is negligible at distances larger than unity. These
values of the parameters of the potentials are used to im-
plement an efficient link-cell algorithm which takes into
account the short range interactions. With this choice of
parameters of the potentials, equations (3, 4), the radius
of the bead is large enough to ensure that chains do not
intersect.

2.2 The external field

An external field or bias,B, is implemented via a change in
energy −Bδx involved with each movement of a monomer
by δx along the field (x−) direction. The magnitude
of the step length δx is selected randomly between 0
and a fixed small value (δxmax = ±0.5 here). The
Metropolis algorithm is used to move a randomly se-
lected bead in a randomly selected direction with ran-
domly selected step length δx, δy, and δz with probabil-
ity min{1, exp[−(Enew − Bδx − Eold)/kBT ]}, where Eold

and Enew are energies (FENE and Morse) in the old and
new configurations, respectively. An attempt to move each
bead once is defined as a unit Monte Carlo step (MCS)
of time.
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2.3 The porous medium

The porous medium is generated by a random distribution
of quenched immobile particles each of which interacts
with the beads via the Morse potential equation (4). The
choice of the minimum of the potential at rmin = 0.8 from
the center gives an estimate of the diameter of the spheri-
cal Morse particle. The hard core volume of a pore barrier
particle is therefore, vp = 4

3π( rmin

2 )3 ' 0.268. The barrier
concentration C is defined as the number of particles per
unit cell which may also be referred to as a number den-
sity. Thus, as long as the volume of a particle is less than
1, a number density or concentration C > 1 is allowed.
An effective percolation threshold of the porous medium
is achieved at the barrier concentration C ' 1.1 [27]. In
order to have well connected (spanning) pores, the pore
volume space must be above the pore-percolation thresh-
old, i.e., the barrier concentration must be below C = 1.1.
In a field, the movement of chains becomes too slow to
draw meaningful conclusions closer to the threshold. In
this study, the concentration of the obstacles C is varied
between 0 and 0.875, well below the threshold.

The temperature is kept constant at kBT = 2.0 so as
to simulate the good solvent condition since from previous
studies of the model [21] the θ−temperature is known to
be kBTθ = 0.62 in absence of the field. In this way we make
sure that the short-ranged attractive Morse interactions
between the beads will be considerably below the bead’s
thermal energy and will have little effect on the interaction
of the drifting chains with the frozen obstacles.

2.4 Physical quantities

The behavior of the mean square displacements (MSD)
of the chain’s central bead (g1) and of its center of mass
(g3), defined by equation (1), is studied in detail along
with the radius of gyration as a function of the barrier
concentration and field strength. During the simulation,
we also keep track of mean bond length and energy.

Since the external field introduces a preferred direction
for the motion of the chain nodes, we analyze the longitu-
dinal and transversal components of the MSD separately,
i.e., the longitudinal displacements

g1L(t) = 〈[xN/2(t)− xN/2(0)]2〉

g3L(t) = 〈[xCM (t)− xCM (0)]2〉, (5)

along the bias field direction, and the transversal displace-
ments,

g1T(t) = 〈[yN/2(t)− yN/2(0)]2 + [zN/2(t)− zN/2(0)]2〉,

g3T(t) = 〈[yCM(t)− yCM (0)]2 + [zCM (t)− zCM(0)]2〉.
(6)

perpendicular to the bias field.
The power-law exponents ν1L, ν1T, defined by equa-

tion (2), are determined from the slope of the ln(g1L/T)
vs. ln(t) curve at time t,

ν1L/T(t) = d ln[g1L/T(t)]/d ln(t) (7)

which, in a discrete form, can be written as,

ν1L/T[(tn + tn−1)/2]

= ln[g1L/T(tn)/g1L/T(tn−1)]/ ln(tn/tn−1) (8)

where tn−1 and tn are two consecutively measured times.
Similar expressions are used to evaluate ν3L and ν3T from
the corresponding displacements g3L and g3T.

2.5 Simulation parameters and statistics

The simulations are performed in a volume of 643 cells
with obstacle concentrations ranging from C = 0 to
C = 0.875 (229376 bead particles) to form the porous
medium. The length of the diffusing chain, immersed into
this host matrix, assumes the values N = 1, 4, 8, 16, 32, 64
and 128 monomers. The intensity of the external field B is
varied from 0.125 to 2.0 relative units (in our case energy
in [kBT ] per distance in unit lengths), so that the aver-
age potential energy, gained by the particle due to the
field in 1 MCS is much less than the kinetic or heat en-
ergy per particle (note that the average absolute value of
randomly generated displacements is |∆x| = 0.25 which
coupled with B ≤ 2.0 gives more than four times smaller
energies than the heat energy kBT = 2.0 used in the simu-
lations). To obtain better statistics all the measurements
have been averaged over 20 to 50 independent random
media. Since the required computational effort is consid-
erable, typically the length of the runs was set to 106 MCS.

Another way to improve the statistics of our measure-
ments, used in the present study, is to move many non-
interacting (interpenetrable) chains (each driven polymer
in the system does not “feel” the other driven polymers
and can penetrate through them), and to average obser-
vations over all chains. It should be clear that our results
apply strictly to the case of very dilute polymer solu-
tions when polymer coils do not interact with each other
and, therefore, do not jam or block narrow channels or
“bottlenecks” in the host matrix for each other.

3 Results and discussion

3.1 Power-law variation of MSD

The time dependence of the mean square displacements
of the center of mass of the chain and that of its cen-
ter node (g3 and g1) is studied in detail as a function
of field (B) and barrier concentration (C) for different
chain lengths. As mentioned above, the field is applied in
x−direction, therefore, the displacements along the longi-
tudinal (x) and transversal (y, z) directions may be dif-
ferent, i.e. an anisotropy in the displacement is expected
due to the field. The displacements may further be mod-
ified by the presence of quenched barriers. Therefore, the
longitudinal and transversal components of the displace-
ments are analyzed separately to see the changes in their
variations directly. Further, as in most studies, we look
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for the power-law dependence of the MSDs described by
equation (1).

In an ideal system, i.e., for the motion of a particle ex-
ecuting its stochastic motion in a biased field, one would
expect a power-law dependence of the ms displacement,
g ' Atk1 +Btk2 , where the exponents k1 and k2 describe
the diffusive and drift behavior with their ideal values 1
and 2, respectively. The crossover from diffusion to drift
in time as a function of bias in the variations of the mean
square displacement and corresponding exponents are rel-
atively well understood. The motion of such diffusing par-
ticles under bias in the presence of quenched barriers (i.e.
in a porous medium) becomes very complex as the bias
begins to compete with the barriers. However, one usually
studies the MSDs using a leading power-law described by
a single exponent, equation (1), and examines the varia-
tion of the exponent with field and barrier concentration.

In the present work we examine our data for the MSD
of the center node of the chain and that of its center of
mass using such a power-law. A typical variation of the
longitudinal and transversal MSD’s with time is presented
in Figure 1a. It is interesting to note that at compara-
tively short times (102−103 MCS) larger MSDs are ob-
served perpendicular to the bias whereas for large time
intervals (> 104 MCS) the overall movement along the
field prevails. The slope of these data provides an esti-
mate of the effective exponent. A crossover between the
short time behavior with a smaller slope and the long time
behavior with a larger slope is evident for both longitu-
dinal and transversal components. Further, the MSD of
the center of mass merges with that of the center node at
times when the chain starts moving along the field as a
whole (at ≈ 105 MCS), while for a further decay of time
the transversal MSD of the center monomer overtakes the
transversal movement of the center of mass. Thus clearly
the motion of a chain node is more complex than that of
a free particle as mentioned above. For ν1 and ν3 the on-
set of oscillations periodic in the logarithm of time [8] is
demonstrated in Figure 1b where in a time interval of 107

MCS more than three modulations are seen.

In order to study the change in the power-law behav-
ior more closely, we evaluate the exponent periodically in
small time intervals and examine the variation of its mag-
nitude with time. The variation of the corresponding ex-
ponents for the longitudinal components of the MSD with
time is presented in Figure 2 at various values of field
with different chain lengths at the barrier concentration
C = 0.50. Since results with reasonable statistics require
considerable computational efforts, our simulations span
a time interval of 106 MCS whereby only the first modula-
tion of νeff is clearly observed. The longitudinal exponent
(νeffL) for a single particle (chain length one) shows a nice
crossover from a diffusive behavior (νeffL ∼ 1) in the short-
time regime to a drift behavior (νeffL ∼ 2) in the long-time
regime. We note that the crossover time depends on the
magnitude of the field (B): the smaller the field, the longer
it takes to reach the drift motion. On increasing the chain
length (N = 4, 8, 16), we see a trend for such a crossover
to take longer. In addition, the magnitude of the exponent
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Fig. 1. (a) Mean square displacement versus time of a chain
of 32 beads in a box of 643 cell size with periodic boundary
conditions. The intensity of the biasing field is B = 1.5 in
kBT units and the obstacle concentration is C = 0.75. The
data was averaged over 100 runs of 16 chains each in about 50
independent porous media. (b) Log-oscillations in ν1 and ν3

for chain length N = 32 and C = 0.50, B = 0.375

seems to decay somewhat with time, also the short time
value of the exponent for the center node of the chain (ν1)
is smaller than that for the center of mass as expected.

On increasing the chain length further to N = 32 and
64, logarithmic oscillations begin to develop in the varia-
tion of the long time values of the exponent. Further we
note that the larger the chain, the larger is the oscilla-
tion’s period and amplitude. For the long chain (N = 64),
the exponent shows a maximum which becomes more pro-
nounced at higher values of the field.

The variation of the longitudinal exponent ν3L in terms
of the average distance r traveled by the chain center of
mass from the beginning of the measurement is plotted in
Figure 3. Evidently, the distance when ν3L reaches its first
maximum grows steadily with decreasing intensity of the
fieldB, that is, the transition from diffusive to drift motion
takes place faster with larger values of the bias – Figure 3a.
The value of the maximum itself is considerably lower for
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Fig. 2. Longitudinal effective exponent vs. time at C = 0.50, for various bias fields and chain lengths as marked in the figure.
The symbols correspond to a bias field B as follows: (+) 0.0625, (×) 0.125, (4) 0.25, (5) 0.50, (∗) 0.75, (3) 1.0, (©) 1.5 and
(2) 2.0. The symbols connected by dashed lines give the center of mass exponent while the solid lines give the corresponding
exponent of the center bead of the chain. Time is given in MCS-units everywhere.

very strong biases (B > 5) when polymer chains spend
most of their time hooked at obstacles and the monomers
can hardly perform transversal moves so as to disentangle
and subsequently drift with the field. Within the total
length of the measurement (106 MCS), the MSD of chains
at such intensity of the field is about 40 times smaller
than the distance reached at moderate bias strength 1 <
B < 5. For B < 1 the field is already too weak to carry
the chain sufficiently far. Despite such difficulties of the
measurement the first period of log-oscillations is clearly
seen in Figure 3a, moreover, the period of the oscillation

λ visibly grows with growing bias as the careful analysis
of Figure 3a shows. It is remarkable that this finding for
a rather complex system of bead-spring chains protruding
into the frozen matrix of randomly distributed obstacles
agrees very well with the simulational results for the much
simpler case of biased diffusion which tracer atoms may
perform on random lattices [6,7].

In Figure 3b we show the progressive shortening of
λ, the oscillation period, with increasing concentration of
the obstacles C (for C = 0 the chain’s drift is unper-
turbed and no oscillations exist). Evidently, the period λ
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Fig. 3. ν3L vs. displacement from the starting point r for: (a)
various bias fields at C = 0.75, and (b) for various obstacle
concentrations at B = 1.5. The chain length in both cases is
N = 32.

is related to the changing average distance between barri-
ers in the medium. The simulations of random walkers [6]
find a similar decrease of λ with increasing concentration
of the blocking sites.

A signal of the oscillatory behavior in the effective
power-law exponent with overshoot and undershoot is also
observed for the transversal component of the MSD (see
Fig. 4). As for the exponent ν3T, log-oscillatory behavior
appears for weaker fields B and at smaller chain lengths
N than for ν3L. A distinct difference between the instan-
taneous values of the exponents for the transversal com-
ponent of the MSD of the center node and that of the
center of mass arises quickly for longer polymer chains,
N > 8. The amplitude of the log-oscillations is much
more pronounced for the center of mass exponent than
for the middle monomer, suggesting a trend toward nearly
drifting transversal motion for the chain as a whole with
increasing chain length (νeffT ≈ 1.6) at time (∼ 104

MCS) where the first maximum occurs. In the same time
regime the middle monomer already performs a purely
diffusive motion (νeffT ≈ 1) perpendicular to the field.

Intuitively this can be attributed to the circumventive mo-
tion of the chain around an obstacle. Comparison with
Figure 3a shows that the oscillations in the transversal
exponent νeffT take place simultaneously with those of
ν3L, suggesting that the transversal displacement is not
independent of the longitudinal movement of the chain,
as demonstrated in Figure 5.

The position of tmax, the first maximum of ν3T in time,
can be easily determined – the plot shown in Figure 5f
yields tmax ∝ N . In contrast, for the chain lengths used
in this study, we find that the spatial position of this max-
imum, i.e. the mean-square displacement perpendicular to
the field, is nearly constant or decreases rather slowly with
N . Thus Figure 5f appears consistent with theN−1 depen-
dence of the diffusion coefficient on chain length typical for
the Rouse-like polymer dynamics of our model. Indeed, in
the direction perpendicular to the field B, one would ex-
pect the motion of the driven chain to be purely diffusive.
The typical time tmax, needed by the chain to travel the
certain distance which corresponds to the first oscillation
maximum, should be inversely proportional to the chain’s
diffusion coefficient D, and, therefore, for Rouse diffusion
tmax should grow linearly with the chain length N .

3.2 Variation of gyration radius with barrier
concentration and field

In this section we report some simulational results con-
cerning the average size of the polymer chains which are
driven by the field through the random host matrix. These
findings supplement the rather complex picture of biased
diffusion, observed in the present study, demonstrating
that the size of the penetrating objects is strongly depen-
dent on the porosity of the medium and the intensity of
the applied external field [18,28].

Figure 6 shows plots for the scaled MS gyration radius
(Rg) with barrier concentration and field. First, we note
that Rg depends nonmonotonically on the barrier con-
centration (Fig. 6a). Introducing quenched barriers (i.e.
increasing C from zero), seems to elongate the chain as
they are forced to explore the narrowing cavities in the
host matrix. For the short chains, N = 16, this effect is
missing because they still fit into the free volume between
the obstacles. For N = 32, and especially for N = 64, with
growing density of barriers the elongation/spreading in the
low concentration regime increases. On further increasing
the barrier concentration these chains begin to be con-
fined by the walls of the pores instead, resulting in a lower
Rg. Thus there is a characteristic concentration at which
the gyration radius is maximum. More thoroughly this
relationship has been investigated in our previous works
[11,16].

The response of the gyration radius to changing inten-
sity of the field also exhibits a nonmonotonic behavior –
Figure 6b. At C = 0.75, Rg increases on increasing the
field B until a characteristic value (Bc) is reached beyond
which it begins to decline. In low field regimes, the chains
continue to elongate on increasing field until they begin to
get hooked at the barriers. The larger the chain length is,
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Fig. 4. Transversal effective exponent vs. time t at C = 0.50, for various bias fields and chain lengths as marked in the figure.
The legend is the same as in Figure 2. Time is given in MCS-units everywhere.

the higher is the probability of such an encounter. There-
fore, the characteristic field (Bc) increases on decreasing
the chain length. We are unable to provide here a more
quantitative nature of such a decay, due to the limited
set of data points; however, a power-law decay of such
a characteristic field with the chain length has been ob-
served in a somewhat different system dealing with a lat-
tice model [16].

Similar to the R2
g vs. B relationship, a nonmono-

tonic dependence, characterized by a “critical” intensity
Bc, is also observed in the drift velocity (see Fig. 7).
Recently [11] we found that NBc ≈ const. Again we
would like to point out a close resemblance with some ear-

lier results [5,29,30] on the influence of an electric field on
random walkers in a random environment. While in refer-
ence [30] it has been predicted that for a certain bias the
drift velocity will vanish, our rather complex moving ob-
jects follow rather the prediction [5,29] (for tracer atoms
under strong influence of the electric field) that for high
bias the drift will be reached after long times.

Thus, the competition between field strength and bar-
rier concentration leads to a nonmonotonic behavior of
the conformational properties, and to a nonlinear response
which is beyond the description in the framework of tra-
ditional linear response theories.
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Fig. 5. (a)-(e) Longitudinal (empty symbols) and transversal (full symbols) effective exponent vs. time t at C = 0.75 and
B = 1.5 for various chain lengths as marked on the figures. The circles (©) correspond to the center of mass effective exponent,
while the squares (2) correspond to the effective exponent of the center bead of the chain. (f) The first maximum of the center
of mass transversal effective exponent in time tmax vs. chain length N . Time is given in MCS-units everywhere.

4 Summary

We use an off-lattice bead-spring model of a coarse-grained
polymer chain to study polymer chain dynamics in a host
matrix of randomly distributed obstacles under the influ-
ence of an external field. Our main concern is the behavior
of the exponent describing the MSD/time variation. We
find that the presence of a sufficiently strong field and the
interaction between the chain and the obstacles leads to
logarithmic oscillations of the exponents describing the
chain’s movement along and perpendicular to the field
direction.

As in some earlier studies of tracer atoms, performing
biased diffusion on a random lattice, we find that the os-
cillation period of the exponent modulation increases as
the bias and the mean “free path” of the chains in the host
matrix are increased. Clearly, some questions concerning,
for instance, the total number of oscillations of νeff , or
their rate of decay with elapsed time, remain unanswered
by the present study. A more quantitative investigation
would require larger systems and much more computing
time. However this is left for future work.

Finally, it is hoped that our work will stimulate interest
to study biased diffusion of polymer chains in a random
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Fig. 6. (a) Rg scaled with N2ν (ν = 0.59) vs. C for chain
lengths 16, 32 and 64 and vs. B (b) at C = 0.75 for N = 16,
32, 64 and 128.

0.0 0.5 1.0 1.5 2.0
Bias [units of k BT / cell]

0.0

1.0

2.0

3.0

4.0

<V
> 

10
4  [u

ni
ts

 o
f c

el
l /

 M
C

S
]

C=0.25
C=0.50
C=0.75

N=32

Fig. 7. Mean drift velocity vs. field, measured during 106 MCS
of the simulations for chains with N = 32.

medium also experimentally. Theoretical work, consider-
ing flow of macromolecules through a random host matrix
is also highly desirable. We hope that the present study
will be helpful for such efforts.
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A. Milchev and V. Yamakov acknowledge support from the
Bulgarian Science Foundation under Grant No. X-644/1996.

References

1. K. Kremer, G.S. Grest, in Monte Carlo and Molecular
Dynamics Simulations in Polymer Science, edited by K.
Binder (Oxford University Press, New York, 1995), p. 194.

2. P.-G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, NY, 1979).

3. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics
(Clarendon Press, Oxford, 1986).

4. J. Bernasconi, W.R. Schneider, J. Phys. A 15, L729 (1982).
5. R.B. Pandey, Phys. Rev. B 30, 489 (1984).
6. E. Seifert, M. Suessenbach, J. Phys. A 17, L703 (1984).
7. D. Stauffer, D. Sornette, Physica A 252, 271 (1998); A.

Kirsch, Int. J. Mod. Phys. 9, No. 7 (1998); J. Draeger
(private communication).

8. D. Sornette, Phys. Rep. 297, 239 (1998).
9. V. Yamakov, D. Stauffer, A. Milchev, G. Foo, R. Pandey,

Phys. Rev. Lett. 79, 2356 (1997).
10. V. Yamakov, A. Milchev, Phys. Rev. E 55, 1704 (1997).
11. V. Yamakov, A. Milchev, Phys. Rev. E 56, 7043 (1997).
12. A. Ajdari, D. Mukamel, L. Peliti, J. Prost, J. Phys. I France

4, 1551 (1994).
13. D. Long, J.L Viovy, A. Ajdari, Phys. Rev. Lett. 76, 3858

(1996).
14. D. Long, J.L Viovy, A. Ajdari, J. Phys.-Cond. Matter 8,

9471 (1996).
15. Z. Toroczkai, R.K.P. Zia, Phys. Lett. A 217, 97 (1996).
16. G.M. Foo, R.B. Pandey, Phys. Rev. E. 51, 5738 (1995).
17. G.M. Foo, R.B. Pandey, Physica A 241, 500 (1997).
18. G.M. Foo, R.B. Pandey, Phys. Rev. E 55, 4433 (1997).
19. G.M. Foo, R.B. Pandey, Macromol. Theory Simul. 7, 283

(1998).
20. I. Gerroff, A. Milchev, W. Paul, K. Binder, J. Chem. Phys.

98, 6526 (1993).
21. A. Milchev, W. Paul, K. Binder, J. Chem. Phys. 99, 4786

(1993).
22. A. Milchev, K. Binder, Europhys. Lett. 26, 671 (1994).
23. A. Milchev, W. Paul, K. Binder, Macromol. Theory Simul.

3, 915 (1944).
24. A. Milchev, K. Binder, J. Phys. II France 6, 21 (1995).
25. A. Milchev, K. Binder, Macromolec. 29, 343 (1996).
26. A. Milchev, K. Binder, J. Comp.-Aided Des. 2, 1 (1995).
27. S.B. Lee, S. Torquato, Phys. Rev. A 41, 5338 (1990).
28. G.M. Foo, R.B. Pandey, D. Stauffer, Phys. Rev. E 53, 5738

(1996).
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